password
created time
Oct 26, 2022 12:22 AM
type
Post
status
Published
date
Oct 26, 2022
slug
summary
好好的一个nil,怎么就有这么多幺蛾子
tags
Go
疑难杂症
category
技术分享
icon

现象

在日常开发中,可能一不小心就会掉进 Go 语言的某些陷阱里,而本文要介绍的 nil ≠ nil 问题,便是其中一个,初看起来会让人觉得很诡异,摸不着头脑。
先来看个例子:
type CustomizedError struct { ErrorCode int Msg string } func (e *CustomizedError) Error() string { return fmt.Sprintf("err code: %d, msg: %s", e.ErrorCode, e.Msg) }
func main() { txn, err := startTx() if err != nil { log.Fatalf("err starting tx: %v", err) } if err = txn.doUpdate(); err != nil { log.Fatalf("err updating: %v", err) } if err = txn.commit(); err != nil { log.Fatalf("err committing: %v", err) } fmt.Println("success!") } type tx struct{} func startTx() (*tx, error) { return &tx{}, nil } func (*tx) doUpdate() *CustomizedError { return nil } func (*tx) commit() error { return nil }
这是一个简化过了的例子,在上述代码中,我们创建了一个事务,然后做了一些更新,在更新过程中如果发生了错误,希望返回对应的错误码和提示信息。
如果感兴趣的话,可以在这个地址在线运行这份代码:
看起来每个方法都会返回 nil,应该能顺利走到最后一行,输出 success 才对,但实际上,输出的却是:
err updating: <nil>

寻找原因

为什么明明返回的是 nil,却被判定为 err ≠ nil 呢?难道这个 nil 也有什么奇妙之处?
这就需要我们来更深入一点了解 error 本身了。在 Go 语言中, error 是一个 interface ,内部含有一个 Error() 函数,返回一个字符串,接口的描述如下:
// The error built-in interface type is the conventional interface for // representing an error condition, with the nil value representing no error. type error interface { Error() string }
而对于一个变量来说,它有两个要素,一个是 type T,一个是 value V,如下图所示:
notion image
来看一个简单的例子:
var it interface{} fmt.Println(reflect.TypeOf(it), reflect.ValueOf(it)) // <nil> <invalid reflect.Value> it = 1 fmt.Println(reflect.TypeOf(it), reflect.ValueOf(it)) // int 1 it = "hello" fmt.Println(reflect.TypeOf(it), reflect.ValueOf(it)) // string hello var s *string it = s fmt.Println(reflect.TypeOf(it), reflect.ValueOf(it)) // *string <nil> ss := "hello" it = &ss fmt.Println(reflect.TypeOf(it), reflect.ValueOf(it)) // *string 0xc000096560
在给一个 interface 变量赋值前,TV 都是 nil,但给它赋值后,不仅会改变它的值,还会改变它的类型。
当把一个值为 nil 的字符串指针赋值给它后,虽然它的值是 V=nil,但它的类型 T 却变成了 *string
此时如果拿它来跟 nil 比较,结果就会是不相等,因为只有当这个 interface 变量的类型和值都未被设置时,它才真正等于 nil
再来看看之前的例子中,err 变量的 TV 是如何变化的:
func main() { txn, err := startTx() fmt.Println(reflect.TypeOf(err), reflect.ValueOf(err)) if err != nil { log.Fatalf("err starting tx: %v", err) } if err = txn.doUpdate(); err != nil { fmt.Println(reflect.TypeOf(err), reflect.ValueOf(err)) log.Fatalf("err updating: %v", err) } if err = txn.commit(); err != nil { log.Fatalf("err committing: %v", err) } fmt.Println("success!") }
输出如下:
<nil> <invalid reflect.Value> *err.CustomizedError <nil>
在一开始,我们给 err 初始化赋值时,startTx 函数返回的是一个 error 接口类型的 nil。此时查看其类型 T 和值 V 时,都会是 nil
txn, err := startTx() fmt.Println(reflect.TypeOf(err), reflect.ValueOf(err)) // <nil> <invalid reflect.Value> func startTx() (*tx, error) { return &tx{}, nil }
而在调用 doUpdate 时,会将一个 *CustomizedError 类型的 nil 值赋值给了它,它的类型 T 便成了 *CustomizedError ,V 是 nil
err = txn.doUpdate() fmt.Println(reflect.TypeOf(err), reflect.ValueOf(err)) // *err.CustomizedError <nil>
所以在做 err ≠ nil 的比较时,err 的类型 T 已经不是 nil,前面已经说过,只有当一个接口变量的 TV 同时为 nil 时,这个变量才会被判定为 nil,所以该不等式会判定为 true
要修复这个问题,其实最简单的方法便是在调用 doUpdate 方法时给 err 进行重新声明:
if err := txn.doUpdate(); err != nil { log.Fatalf("err updating: %v", err) }
此时,err 其实成了一个新的结构体指针变量,而不再是一个interface 类型变量,类型为 *CustomizedError ,且值为 nil,所以做 err ≠ nil 的比较时结果就是将是 false
问题到这里似乎就告一段落了,但,再仔细想想,就会发现这其中似乎还是漏掉了一环。
如果给一个 interface 类型的变量赋值时,会同时改变它的类型 T 和值 V,那跟 nil 比较时为什么不是跟它的新类型对应的 nil 比较呢?
事实上,interface 变量跟普通变量确实有一定区别,一个非空接口 interface (即接口中存在函数方法)初始化的底层数据结构是 iface,一个空接口变量对应的底层结构体为 eface
type iface struct { tab *itab data unsafe.Pointer } type eface struct { _type *_type data unsafe.Pointer }
tab 中存放的是类型、方法等信息。data 指针指向的 iface 绑定对象的原始数据的副本。
再来看一下 itab 的结构:
// layout of Itab known to compilers // allocated in non-garbage-collected memory // Needs to be in sync with // ../cmd/compile/internal/reflectdata/reflect.go:/^func.WriteTabs. type itab struct { inter *interfacetype _type *_type hash uint32 // copy of _type.hash. Used for type switches. _ [4]byte // 用于内存对齐 fun [1]uintptr // variable sized. fun[0]==0 means _type does not implement inter. }
itab 中一共包含 5 个字段,inner 字段存的是初始化 interface 时的静态类型。_type 存的是 interface 对应具体对象的类型,当 interface 变量被赋值后,这个字段便会变成被赋值的对象的类型。
itab 中的 _typeiface 中的 data 便分别对应 interface 变量的 TV_type 是这个变量对应的类型,data 是这个变量的值。在之前的赋值测试中,通过 reflect.TypeOf reflect.ValueOf 方法获取到的信息也分别来自这两个字段。
这里的 hash 字段和 _type 中存的 hash 字段是完全一致的,这么做的目的是为了类型断言。
fun 是一个函数指针,它指向的是具体类型的函数方法,在这个指针对应内存地址的后面依次存储了多个方法,利用指针偏移便可以找到它们。
再来看看 interfacetype 的结构:
type interfacetype struct { typ _type pkgpath name mhdr []imethod }
这其中也有一个 _type 字段,来表示 interface 变量的初始类型。
看到这里,之前的疑问便开始清晰起来,一个 interface 变量实际上有两个类型,一个是初始化时赋值时对应的 interface 类型,一个是赋值具体对象时,对象的实际类型。
了解了这些之后,我们再来看一下之前的例子:
txn, err := startTx()
这里先对 err 进行初始化赋值,此时,它的 itab.inter.typ 对应的类型信息就是 error itab._type 仍为 nil
err = txn.doUpdate()
当对 err 进行重新赋值时,erritab._type 字段会被赋值成 *CustomizedError ,所以此时,err 变量实际上是一个 itab.inter.typerror ,但实际类型为 *CustomizedError ,值为 nil 的接口变量。
把一个具体类型变量与 nil 比较时,只需要判断其 value 是否为 nil 即可,而把一个接口类型的变量与 nil 进行比较时,还需要判断其类型 itab._type 是否为nil
如果想实际看看被赋值后 err 对应的 iface 结构,可以把 iface 相关的结构体都复制到同一个包下,然后通过 unsafe.Pointer 进行类型强转,就可以通过打断点的方式来查看了。
func TestErr(t *testing.T) { txn, err := startTx() fmt.Println(reflect.TypeOf(err), reflect.ValueOf(err)) if err != nil { log.Fatalf("err starting tx: %v", err) } p := (*iface)(unsafe.Pointer(&err)) fmt.Println(p.data) if err = txn.doUpdate(); err != nil { fmt.Println(reflect.TypeOf(err), reflect.ValueOf(err)) p := (*iface)(unsafe.Pointer(&err)) fmt.Println(p.data) log.Fatalf("err updating: %v", err) } if err = txn.commit(); err != nil { log.Fatalf("err committing: %v", err) } fmt.Println("success!") }
notion image
补充说明一下,这里的inter.typ.kind 表示的是变量的基本类型,其值对应 runtime 包下的枚举。
const ( kindBool = 1 + iota kindInt kindInt8 kindInt16 kindInt32 kindInt64 kindUint kindUint8 kindUint16 kindUint32 kindUint64 kindUintptr kindFloat32 kindFloat64 kindComplex64 kindComplex128 kindArray kindChan kindFunc kindInterface kindMap kindPtr kindSlice kindString kindStruct kindUnsafePointer kindDirectIface = 1 << 5 kindGCProg = 1 << 6 kindMask = (1 << 5) - 1 )
比如上图中所示的 kind = 20 对应的类型就是 kindInterface

总结

  1. 接口类型变量跟普通变量是有差异的,非空接口类型变量对应的底层结构是 iface ,空接口类型类型变量对应的底层结构是 eface
  1. iface 中有两个跟类型相关的字段,一个表示的是接口的类型 inter,一个表示的是变量实际类型 _type
  1. 只有当接口变量的 itab._type 与 data 都为 nil 时,也就是实际类型和值都未被赋值前,才真正等于 nil
到此,一个有趣的探索之旅就结束了,但长路漫漫,前方还有无数的问题等待我们去探索和发现,这便是学习的乐趣,希望能与君共勉。
用 Notion + GitHub + Vercel 搭建个人博客聊聊 GI 值